高清实时抠像(无绿布)
语义软分割。语义软分割(Semantic Soft Segments),旨在精确表示图像不同区域间的软过渡. 类似于磁力套索(magnetic lasso) 和魔术棒(magic wand) 的功能. 普通语义分割将每个像素分配到一个类,语义软分割中则每个像素有可能分配到多个类,且目标之间的过渡区域平滑,这对于图像编辑是非常重要的。以往这需要专业的PS人员处理,而通过软语义分割,将这个过程实现自动化。
改变人体姿势。简单点说,就是给定一幅含有人物的图片和一个目标姿态,将图片内人物转换成目标姿态的样子。当然目标姿态可以是从其他图片人物中计算得来的。(所以也可以将一幅图片的人物转成另一图片内人物的姿态)
照片风格化。换成油画,卡通等等风格
图像去水印及修复。去除一张照片的水印,将一张缺损内容的照片修复,将一张模糊的照片,变得清晰
让动画变高清。例如可以将动漫画面从1080p提升到2160p。
视觉迁移模型。谷歌发文介绍了其BigTransfer(BiT),称其为目前最先进的预训练模型,在分类问题中仅需要每个类少量几个样本即可达到极其优秀的性能。事实上,在ImageNet预训练的ResNet50系列模型是当前的工业标准,用于提取图像特征。在谷歌在论文 BigTransfer (BiT) 中分享的模型则可以轻松打败ResNet50,尽管数据量很少。