车牌识别项目。
涂鸦变实物。我们画一幅涂鸦,用颜色区分每一块对应着什么物体,它就能照着我们的空间布局思路,合成以假乱真的真实世界效果图。 在AI界这叫做叫“语义布局”。
视觉迁移模型。谷歌发文介绍了其BigTransfer(BiT),称其为目前最先进的预训练模型,在分类问题中仅需要每个类少量几个样本即可达到极其优秀的性能。事实上,在ImageNet预训练的ResNet50系列模型是当前的工业标准,用于提取图像特征。在谷歌在论文 BigTransfer (BiT) 中分享的模型则可以轻松打败ResNet50,尽管数据量很少。
表情识别。识别开心,悲伤,惊讶等等表情
去除图中的雨。图像中雨水条纹会严重降低能见度,导致许多当前的计算机视觉算法无法工作,比如在自动驾驶场景下图像去雨就变得非常重要。
物体检测项目。 输入一张图片,输出其中有哪些的物体对象,以及每个对象的位置。其最大的特点是运行速度很快,可以用于实时系统。
自动驾驶仿真平台。SMARTS作为首个支持MARL的自动驾驶仿真平台,将提供Simulator Core(快速且灵活地创建RL模拟环境)、Algorithm Library(集成主流的强化学习算法)、Multi-Agent Trainer(支持大多数多智能体训练范式)、Policy Zoo(支持对社会车辆的实例化)和 Scenario Studio(支持灵活的场景设置),方便参赛者在比赛过程中实现对车辆动力学行为的真实建模,并利用丰富的交通场景进行研究和应用。