移除视频人物。可以移除视频中的物体。
视觉迁移模型。谷歌发文介绍了其BigTransfer(BiT),称其为目前最先进的预训练模型,在分类问题中仅需要每个类少量几个样本即可达到极其优秀的性能。事实上,在ImageNet预训练的ResNet50系列模型是当前的工业标准,用于提取图像特征。在谷歌在论文 BigTransfer (BiT) 中分享的模型则可以轻松打败ResNet50,尽管数据量很少。
去除人脸马赛克。眼中有码,心中无码”是境界,“图上有码,脑补解码”就是PULSE算法了。 PULSE 算法目前只支持人脸的马赛克“去除”,因为训练数据都是人脸。
人工智能换脸。
视频运动放大。视频运动放大技术是一种从视频到视频的滤波处理,可以使我们能够看到在视频中肉眼看不到的小的运动,例如振动飞机机翼的动作,或者在风的影响下摇摆的建筑物等。
改变人体姿势。简单点说,就是给定一幅含有人物的图片和一个目标姿态,将图片内人物转换成目标姿态的样子。当然目标姿态可以是从其他图片人物中计算得来的。(所以也可以将一幅图片的人物转成另一图片内人物的姿态)
拍照做题。输入一张包含数学计算题的图片,输出识别出的数学计算式以及计算结果。 请查看系统文档说明来运行程序。注意,这是一个半开源的项目,目前上传的版本只能处理简单的一维加减乘除算术表达式(如果想要识别更加复杂的表达式,可以参考数学公式识别的论文)。可以参考的代码是前面字符识别部分以及整个算法处理框架。