让动画变高清。例如可以将动漫画面从1080p提升到2160p。
人脸属性替换。例如换个鼻子嘴巴,甚至肤色和性别,通过StarGAN v2可是轻松的识别人脸属性, 并精准替换,肉眼都难以发现破绽。
涂鸦变实物。我们画一幅涂鸦,用颜色区分每一块对应着什么物体,它就能照着我们的空间布局思路,合成以假乱真的真实世界效果图。 在AI界这叫做叫“语义布局”。
视觉迁移模型。谷歌发文介绍了其BigTransfer(BiT),称其为目前最先进的预训练模型,在分类问题中仅需要每个类少量几个样本即可达到极其优秀的性能。事实上,在ImageNet预训练的ResNet50系列模型是当前的工业标准,用于提取图像特征。在谷歌在论文 BigTransfer (BiT) 中分享的模型则可以轻松打败ResNet50,尽管数据量很少。
语义软分割。语义软分割(Semantic Soft Segments),旨在精确表示图像不同区域间的软过渡. 类似于磁力套索(magnetic lasso) 和魔术棒(magic wand) 的功能. 普通语义分割将每个像素分配到一个类,语义软分割中则每个像素有可能分配到多个类,且目标之间的过渡区域平滑,这对于图像编辑是非常重要的。以往这需要专业的PS人员处理,而通过软语义分割,将这个过程实现自动化。
视觉工具名库。包含了很多计算机视觉领域的功能,例如人脸识别,目标检测,轨迹跟踪,手势识别,图像实例分割等等
人工智能换脸。