水果蔬菜数据。包含90483张图,131个种类,100像素。
门牌号码图片。SVHN(Street View House Number)Dateset 来源于谷歌街景中的门牌号码。训练集图片73257张,测试集26032张
超大图片集合。谷歌发布的图片数据库Open Images,包含了900万标注数据,标签种类超过6000种。谷歌在官方博客中写到,这比只拥有1000个分类的ImageNet 更加贴近实际生活。对于想要从零开始训练计算机视觉模型的人来说,这些数据远远足够了。
场景图片。包含10个场景类别,例如卧室、固房、客厅、教室等场景图像。每类场景大约有120,000至3,000,000张图片。
自动驾驶数据。是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。
第一视角视频数据集。Facebook和NUS、MIT等高校联合推出3000小时的第一视角视频数据集Ego4D
人脸识别。包含了来源于互联网的13233张来自5749个人的人脸图片,其中有1680个人至少有2张图片。