场景图片。包含10个场景类别,例如卧室、固房、客厅、教室等场景图像。每类场景大约有120,000至3,000,000张图片。
医学图像数据集。MedMNIST v2 是一个大规模的 2D 和 3D 医学图像分类数据集,包含 12 个 2D 数据集和 6 个 3D 数据集,其中 2D 数据集有 708069 张图片,3D 数据集有 10214 张图片。数据集包含多种模态(X 光片、视网膜 OCT、超声、CT 等)、 多种任务(多分类、二分类、多标签、有序回归), 数据集规模从百量级到十万量级不等;
手写数字图片。训练集样本60,000个,测试集样本10,000个。由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局的工作人员。
超大图片集合。谷歌发布的图片数据库Open Images,包含了900万标注数据,标签种类超过6000种。谷歌在官方博客中写到,这比只拥有1000个分类的ImageNet 更加贴近实际生活。对于想要从零开始训练计算机视觉模型的人来说,这些数据远远足够了。
水果蔬菜数据。包含90483张图,131个种类,100像素。
最大图片集合。大约1500万张图片,2.2万个分类,一般情况下只用子数据集就可以了。。每张都经过了严格的人工标注。数据集还是按照WordNet框架组织的,WordNet模拟的就是人类对事物的识别系统。
城市街道场景。是关于城市街道场景的语义理解图片数据集。 它主要包含来自50个不同城市的街道场景,拥有5000张在城市环境中驾驶场景的高质量像素级注释图像。此外,它还有20000张粗糙标注的图像。