场景图片。包含10个场景类别,例如卧室、固房、客厅、教室等场景图像。每类场景大约有120,000至3,000,000张图片。
最大图片集合。大约1500万张图片,2.2万个分类,一般情况下只用子数据集就可以了。。每张都经过了严格的人工标注。数据集还是按照WordNet框架组织的,WordNet模拟的就是人类对事物的识别系统。
门牌号码图片。SVHN(Street View House Number)Dateset 来源于谷歌街景中的门牌号码。训练集图片73257张,测试集26032张
检测图内中文。
图像理解。为了使计算机理解图像,数据集中的图片被划分成一个个区域,每个区域都有与其对应的一句自然语言描述。共108,077张图。
第一视角视频数据集。Facebook和NUS、MIT等高校联合推出3000小时的第一视角视频数据集Ego4D
超大图片集合。谷歌发布的图片数据库Open Images,包含了900万标注数据,标签种类超过6000种。谷歌在官方博客中写到,这比只拥有1000个分类的ImageNet 更加贴近实际生活。对于想要从零开始训练计算机视觉模型的人来说,这些数据远远足够了。